

Chesapeake Conservancy

Solar growth in the Chesapeake watershed

Dr. Michael Evans, Senior Data Scientist Chesapeake Conservancy

Susan Minnemeyer, Environmental Consultant Nature Plus

Objectives

Map solar arrays with AI
Quantify land use transitions
Predict future trends

Remote Sensing

- 1. Data about Earth's surface
- 2. Collected by satellite or plane
- 3. Can have multiple 'bands'
- 4. Many types of data (radar, lidar, etc.)

Deep Learning (AI)

Great at accommodating non-linearities, conditionality, complex interactions

Image Segmentation with U-Net

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Ronneberger et al. 2015

Mapping solar

Recall: 90.2% Precision: 90.1% IoU: 85.6%

Map all solar arrays in DC, DE, MD, PA, NY, VA, WV Each year from 2017 - 2021

> By 2021: 958 arrays detected* 52.3 km²

2017 - 2021

State	Area (%)	Rate of increase
DE	0.9 (1.79E-04)	$1.40 \pm 0.34 \text{E-}03$
MD	8.9 (3.54E-04)	$5.00 \pm 0.34 \text{E-}03$
NY	9.9 (0.82E-04)	$1.33 \pm 0.48 \text{E-}03$
PA	3.7 (0.32E-04)	$0.61 \pm 0.34 \text{E-}03$
VA	27.4 (2.69E-04)	$6.27 \pm 0.34 \text{E-}03$

Land cover transitions

Land cover transitions

Less

-0.4

-1.92

-0.03

0.07

-1.51

-2.22

Wetland, Wood -

State

d_i = solar developed? y_i | d_i = years to development

Impervious surface Tree cover Open space Cultivated Farm Score Distance to Transmission Distance to Road Population Income GAP Status Slope Latitude

https://cicapps.org/ches-bay-solar/

- 1. System for automatically producing updated maps
- 2. Incorporate grid capacity data
- 3. Anticipate most and least likely places for future buildout
- 4. Opportunities for restoration if we're intentional?

Next Steps

Optimal Solar Siting for Maryland & Nature Positive Solar

Susan Minnemeyer, Environmental Consultant Nature Plus

Land use conflicts

Competes with desirable land uses

Prime farmland loss removes the best land from food production Loss of forest and important lands for wildlife and climate

Solar Siting

Optimal solar siting

Principles

- Solar energy expansion is required
- Optimal siting can reduce tradeoffs
- Equitable distribution of benefits
- Policies and incentives to guide solar to preferred sites

Key question: Are optimal sites sufficient to meet renewable energy goals ?

Optimal Solar Siting for Maryland A Pilot for Baltimore County and City

Susan Minnemeyer and Emily Wiggans ChesapeakeConservancy.org

October 2020

Optimal Solar Siting for St. Mary's County, Maryland

by Emily Wiggans, Emily Mills, and Susan Minnemeyer Chesapeake Conservancy | Conservation Innovation Center March 2021

Recommendations

Degraded lands offer a significant contribution to optimal solar siting

Brownfield opportunities: Landfills, Industrial sites, coal energy transition

Provide incentives & policies to encourage solar development on brownfields Lead by example on public facilities Annapolis Solar Park Largest closed landfill project in North America - 80 acres – 18MW

Source: EDF Renewables

Nature Positive Solar Concept

Nature positive solar implements additional measures to generate environmental benefit:

- Site Selection
- Construction and Vegetation Management Best Practices
- On-site Conservation Practices
- Wetland Restoration
- Conservation & Future Land Use

Chesapeake Conservancy

Questions?

Michael Evans mevans@chesapeakeconservancy.org

Susan Minnemeyer susan@natureplussolutions.org