

Thermal Wood Energy

June 1st, 2022

Overview

- Maryland Clean Energy Center and Wood Innovations background
- What is advanced wood energy?
- Where does the wood come from?
- Where is it practical & case studies
- Where can you learn more?

Maryland Clean Energy Center

• What is MCEC?

Corporate instrumentality of the state created by the General Assembly with a statute-directed mission to advance clean energy and energy efficiency products, services, and technologies as part of a specific economic development strategy.

• What does MCEC do?

Advances the adoption of clean energy, energy efficiency products, services, and technologies.

• How does MCEC carry out its mission?

Leveraging private capital to help homeowners, businesses, and government entities recue energy costs.

Learn more at <u>www.mdcleanenergy.org</u>

USDA Wood Innovations Grant

• Purpose

4

Stimulates and expands wood energy products and wood energy markets.

• Wood Energy Coordinator role

Education, facilitate a switch from fossil fuels, stimulate the wood energy team, provide additional wood energy opportunities across MD

What is Advanced Wood Heat?

• Solar battery

Converts solar-derived stored energy to thermal

• Thermochemical

Converts wood to only thermal energy

• Steam turbines/engines, ORC systems, Stirling engines

Uses the excess energy to generate electricity called Combined Heat and Power (CHP)

Adsorption or Absorption Chillers

Thermally-driven cooling, "Tri-generation" of thermal, CHP, and cooling

Thermochemical system

Courtesy Thermax

Absorption Chiller

Types of Residues

Chips

Cordwood

Pellets

Source	Units	Fuel HHV, mmBtu/unit	Seasonal Conversion Efficiency	Fuel Delivered Cost/Unit	Heat Cost, \$/mmBtu
Green Wood Chips (~40% MCwb)	Tons	10.30	0.70	\$60	\$8.35
Dry Wood Chips (~25% MCwb)	Tons	12.90	0.75	\$80	\$8.27
Wood Pellets (~7% MCwb)	Tons	16.00	0.80	\$250	\$19.53
Natural Gas (in MD)	Thousand Cubic Feet	1.04	0.80	\$15.67	\$18.89
#2 Fuel Oil	Gallons	0.14	0.80	\$3.91	\$34.91
Propane	Gallons	0.0913	0.80	\$3.79	\$51.84
Electric Resistance	kWh	0.0034	0.99	\$0.14	\$41.74

6

Data from the The U.S. Energy Information Agency, U.S. Forest Service Wood Energy Technical Assistance Program,

University of Wisconsin-Madison's Energy Efficiency and Renewable Energy Division of Extension, and Wilson Engineering Services

Where Do Residues Come From?

• Fuel-grade wood

Does not create demand but fills supply need. Closes the forest/timber industry loop through creating solution for the by-product Forest Sector Carbon Cycle

- Collected from timber slash (woody material typically left behind after a timber harvest), thinning from healthy and climateadapted forest stand densities, urban tree management, the products industry, and untreated wood that otherwise would be recycled, landfilled, or burned.
- Maryland produces approximately 2,000,000 tons of fuel-grade wood annually. Without a sustainable destination, most end up in landfills, open burning, or decomposing.

7

Where These Systems Make Sense

 Small- to large- sized facilities with old fossil fuel systems or currently being constructed

Shortest payback time

- Constant thermal demand, possible high electricity demand
- No access to natural gas/dependent on liquid fossil fuels or electric from grid Converts solar-derived stored energy to thermal

• Examples;

Hospitals, schools/universities, nursing homes, factories/warehouses

What are the Concerns?

- Emissions
- Example: Holderness School in New Hampshire. Installed in 2014.

Uses an electrostatic precipitator for emissions control. Other options include bag houses/fabric filters, and flue gas purifiers.

What are the Concerns?

• Forest health and using the Southeast as a model

Different type of land distribution – Maryland is like New England in property size, regulations

Competition with other renewable sources

Complementary based off different strengths & weaknesses

Case Study: Middlebury College

- Switched to wood from #6 oil to meet their carbon reduction goal In 2007, set goal to be carbon-neutral by end of 2016.
- Began operating the chip-fueled CHP gasification system Jan. 2009
 Reduces carbon emissions by ~12,000 tons, about 40% of the college's 2006 emissions. Zero net carbon emissions from net growth of forests in region. 99.5% efficiency of exhaust system removing particles.
- 25,000 tons of wood chips used, sourced within a 75-mile radius
- Huge savings

Reduction of 1,000,000 gallons of #6 fuel oil used annually. Produced 15-20% of the campus's electricity.

• Local economic impact of \$1,000,000 for wood-related purchases

Case Study: Sullivan County, PA School District

- Reason why they switched: Meet local, state, and federal goals Economic development, creation of green jobs centered on renewable energy, and reducing dependence on foreign oil.
- 2.8 mmBtu/hr gasification system, a hot water boiler, and a 3,000-gallon hot water thermal storage tank serve 3 buildings
 200 tans of wood object/year that replace 52,000 gallons of fuel oil/year

800 tons of wood chips/year that replace 52,000 gallons of fuel oil/year.

Huge savings

\$140,000 annual energy savings. 69% of the project covered by grants, the rest was covered by a 1% 10-year loan. 525 mtCO2/year net carbon offset and eliminates 960 lbs/year of sulfur dioxide emissions.

Where to Learn More?

Maura Ross – mross@mdcleanenergy.org

www.mdcleanenergy.org/biomass-maryland/

- Biomass Thermal Energy Council
 <u>www.biomassthermal.org/</u>
- Northern Forest Center
 <u>https://northernforest.org/</u>
- Wisconsin Energy Efficiency and Renewable Energy Division of Extension
 https://fyi.extension.wisc.edu/energy/wisconsin-state-wood-energy-team

Any Questions?

14

Maura Ross Wood Energy Coordinator Phone: 304-676-9224 Email: mross@mdcleanenergy.org